\NIDRN.ETH

Vara.eth: Decentralized,
Bridgeless Application Layer
for Ethereum Network

Nikolay Volf, Andrei Panin, Eugene Way

Version 0.3 | October 2025

Overview of Vara.eth

ara.eth is a high-performance application platform built directly into Ethereum's ecosystem, powered by
v the battle-tested Gear Protocol execution engine that runs Vara Network. Unlike conventional Layer-2

solutions, Vara.eth introduces a transformative approach to decentralized application (dApp)
architecture. It provides a real-time, high-performance, parallel execution environment with near-zero gas
fees and a pre-confirmation mechanism for instant user feedback — while canonical finality remains
unchanged and fully aligned with Ethereum's native finality. Vara.eth integrates with the familiar Ethereum
toolchain — such as MetaMask, Etherscan, Hardhat, and Tenderly — enabled by technologies like that
expose typed interfaces and simplify integration.

The mission of Vara.eth is to enable developers to build scalable, efficient, feature-rich, and user-friendly
dApps. As a real-time application platform working alongside Ethereum, Vara.eth enhances computational
power without causing liquidity fragmentation or requiring asset bridges. By maintaining Ethereum's robust
security and liquidity, it empowers developers to create applications with Web2-level user experiences while
utilizing the unique advantages of blockchain technology.

https://github.com/gear-tech/sails

Each program in Vara.eth maintains its own isolated state, message queue, and execution context —
effectively acting as an independent compute unit. Programs are executed on-demand across a decentralized
network of validators (validator nodes), with no shared memory or global storage between them. As a result,
each program can be naturally viewed as its own "individual rollup." Collectively, these programs form a highly
parallelizable compute layer — a "swarm of rollups" — enabling Vara.eth to achieve massive horizontal
scalability. This architecture allows multiple programs to execute simultaneously without data contention or
coordination overhead, providing developers with unprecedented flexibility to implement resource-intensive
logic at scale without sacrificing performance or composability.

For developers, the process begins with identifying the most computationally intensive parts of their
application's business logic. These components are extracted from Solidity-based smart contracts and
reimplemented as WebAssembly (WASM) programs executed off-chain by Vara.eth. These programs can then
be invoked as needed, radically reducing operational complexity and gas-related costs.

This approach is particularly attractive for existing applications constrained by Ethereum's resource limits, as
well as for projects that were previously impractical to launch due to high execution costs or performance
bottlenecks that degrade the user experience.

Vara.eth: Revolutionizing Ethereum

Why Ethereum Needs Vara.eth

Ethereum remains the dominant blockchain for decentralized application development, but it faces significant
challenges that hinder its scalability and usability. The network's inability to process transactions in parallel,
its slow finality times, and its high gas fees are critical barriers for developers and end users alike. These
limitations are especially pronounced in high-demand sectors such as DeFi, gaming, and enterprise
applications, where responsiveness and affordability are crucial to user adoption.

The root of these challenges lies in Ethereum's single-threaded architecture. The lack of parallel processing
limits the network's computational throughput, making it difficult to handle complex or resource-intensive
operations. Block confirmation time about 12 seconds introduces sensitive delays to user interactions. Finality
times, averaging around 13 minutes, intensify the problem. While transactions in a block are usable after one
block confirmation, applications requiring high security typically wait for finalization to ensure immutability.
High gas fees (i.e., expensive computations) further deter adoption, particularly for applications that require
frequent or intensive computations.

DEX / CEX

o
—_—

WBUY ETH

CONFIRMATION ~ 12s

. EXECUTION RESULT V ADD TO BLOCK L1

L1 VALIDATORS

GAS FEES — ETH $$$ FINALISATION ~ 13 MIN

Ethereum Layer-1 Network: Basic Workflow

Layer-2 solutions such as Optimistic Rollups, ZK Rollups, and Based Rollups have attempted to address these
issues by offloading transaction processing from the Ethereum main chain. However, while they improve
scalability, they introduce trade-offs that limit their effectiveness in certain scenarios.

rely on a lengthy challenge period for security, delaying transaction finalization from a few
hours to several days, depending on the specific rollup implementation.

, While faster, impose significant computational overhead due to the resource-intensive nature of
proof generation that includes a combination of complex cryptographic operations, large circuit sizes, and the
need for rigorous guarantees of correctness and privacy.

Both approaches often operate in isolated environments, fragmenting liquidity and complicating
interoperability.

PERIOD HOURS-DAYS WITHIN

GAS FEES - OP S b i ESS | e - oo

L1 VALIDATORS

[€,,3]

‘ _FINALISATION - 13 MIN
y Proof ZKP
d verification

FINALISATION

_ . ceo s
DBER— ' ceo oo

Interaction of L2 Networks with Ethereum L1: Basic Workflow

In 2023, Based rollups were proposed as an alternative, leveraging Ethereum's Layer-1 protocols for
sequencing and decentralization. While these rollups reduce reliance on token-based mechanisms and
simplify certain operations, they inherit scalability limitations due to shared transaction sequencing and data
availability constraints. They sacrifice transaction flexibility needed for custom transaction sequencing, which
can hinder their effectiveness for certain specialized use cases.

So What?

Vara.eth presents a fundamentally different approach by functioning as a decentralized compute network
fully integrated with Ethereum. Unlike rollups, where smart contracts are deployed separately on Layer-2
chains, Vara.eth keeps all operations native to Ethereum. This design allows programs running on Vara.eth to
interact seamlessly with Ethereum's existing smart contracts, eliminating the need for asset bridging and
avoiding liquidity fragmentation. Developers can utilize Ethereum's robust ecosystem without the additional
complexity introduced by traditional Layer-2 solutions.

Another critical advantage of Vara.eth lies in its memory capacity. With up to 2GB of memory allocated per
program, Vara.eth enables developers to execute resource-heavy computations that are impractical on
Ethereum or Layer-2 rollups. For comparison, Ethereum and Optimistic Rollups are constrained by gas limits,
which indirectly restrict memory usage to a fraction of what Vara.eth provides. Similarly, ZK Rollups, while
efficient in compressing data for on-chain validation, impose strict limitations on memory to prioritize proof
generation efficiency. Vara.eth's expanded memory allocation opens the door for advanced use cases such as
Monte Carlo simulations, Al model training, and real-time data analysis.

The multi-threaded execution engine further sets Vara.eth apart. Ethereum and most rollups process
transactions sequentially, limiting throughput and creating bottlenecks in high-demand scenarios. In contrast,
Vara.eth supports parallel execution, allowing multiple computations to run simultaneously. This innovation is
particularly beneficial for latency-sensitive applications, including high-frequency trading platforms, gaming
environments, supply chain monitoring systems and more.

At the core of this design is Vara.eth's naturally parallel execution model: each program has its own isolated
state and queue, enabling thousands of programs to be executed concurrently without coordination
bottlenecks.

This parallelism extends beyond the execution layer into the very architecture of Vara.eth itself, offering
powerful horizontal scalability options. While current deployments may use a unified validator set and single
Router, the system is inherently designed to support multiple scaling paradigms in the future:

¢ Single Router with unified validator set: All validators serve all programs under one Router instance
— simple and consistent.

e Multiple independent Routers (clusters): Each Router has its own validator set and serves a distinct
pool of programs, enabling Vara clusters to scale horizontally — all anchored to Ethereum L1.

e Subgrouped validators within a single Router: Validators are partitioned to handle subsets of

programs, reducing synchronization overhead and improving scalability within a single cluster.

These potential architectures are not mutually exclusive — they can be combined to form a modular and
adaptive execution fabric, where computation scales both within programs (via threads) and across program
clusters. The result is a compute network that grows with demand while preserving Ethereum-level security
and canonical finality.

Vara.eth doesn't compete with L2s — it shows that Ethereum doesn't need new
chains to scale. It needs a powerful application layer built on proven technology.

Cost efficiency is another defining feature of Vara.eth. By offloading intensive computations to its
decentralized network, Vara.eth reduces the costs associated with executing complex logic. Additionally, it
introduces a reverse gas model, where developers can cover transaction fees for users. This approach
provides a frictionless experience similar to Web?2 applications, enabling developers to design user-friendly
dApps that prioritize accessibility and adoption.

Vara.eth also enhances user and developer experience by allowing off-chain transactions with pre-
confirmations. Unlike Layer-2 solutions that often delay finality due to challenge periods or proof generation,
Vara.eth delivers immediate computation results before they are finalized on Ethereum. This capability
ensures real-time responsiveness while maintaining the security guarantees of blockchain-based systems.

The use of Rust as the primary programming language for Vara.eth programs further differentiates it from
traditional Ethereum development. Rust is a widely used, general-purpose language known for its
performance and safety, offering a robust ecosystem that is accessible to a broad range of developers. In
contrast, Solidity, Ethereum's native language, is blockchain-specific and requires a steeper learning curve. By

https://github.com/gear-foundation/arkanoid/tree/master

leveraging Rust, Vara.eth simplifies the development process while enabling the creation of more powerful
and maintainable applications.

In summary, Vara.eth addresses Ethereum's limitations and surpasses the capabilities of Layer-2 solutions by
offering seamless Ethereum integration, expanded memory capacity, parallel execution, cost-efficient
processing, and developer-friendly tools. By bridging the gap between Ethereum's security and the
performance demands of modern applications, Vara.eth is paving the way for the next generation of
decentralized applications across industries such as finance, gaming, Al tools, math modeling, supply chain

management and many more.

Finally, the architectural foundation of Vara.eth is inherently chain-agnostic. While the current implementation
is deeply integrated with Ethereum, the same execution model can be ported to other Layer-1 protocols. In
this way, Vara.eth becomes not only an application platform for Ethereum, but a general-purpose execution
layer capable of extending scalable execution power to any chain that supports smart contract anchoring and

event propagation.

Key Features and Advantages

ara.eth offers a suite of features that address the scalability and usability challenges faced by existing
v blockchain solutions. These features are designed to empower developers and enhance the user

experience, making Vara.eth a powerful tool for modern dApp development.

Seamless Integration with Ethereum

Vara.eth network is fully integrated with Ethereum and operates directly with native Ethereum's smart
contracts. This compatibility ensures that developers can adopt Vara.eth without needing additional tokens,
interfaces, or complex configurations. Users and developers can keep using Ethereum's existing tools and
infrastructure they are familiar with for developing and interacting with Solidity-based smart contracts,
including MetaMask, Etherscan, popular developer frameworks, environments, debugging tools, IDEs
(Thirdweb, Tenderly, The Graph etc). Interaction with Vara.eth programs does not require custom ABI
encoding/decoding — thanks to Sails, developers can call programs directly using familiar Ethereum tools.

https://github.com/gear-tech/sails

Parallel Execution

Vara.eth's architecture inherently supports parallel execution of programs, leveraging multiple CPUs to handle
computational workloads efficiently. This capability allows developers to distribute tasks across several
threads, enabling faster processing for applications like Al models, financial simulations, and complex gaming
logic. By optimizing workloads for parallel execution, Vara.eth significantly boosts throughput and reduces
bottlenecks, ensuring that even the most demanding applications can operate seamlessly.

Programs are inherently isolated and can run in parallel across executors. Additionally, developers can design
their logic to further distribute workloads across multiple programs, enabling natural horizontal scaling.

Advanced Programming Environment

Vara.eth provides developers with a cutting-edge programming environment by combining the power of
WebAssembly (Wasm) with the flexibility of Rust, a widely adopted and developer-friendly language. Wasm
programs on Vara.eth enable high-performance, lightweight execution, while Rust's rich ecosystem and safety
features make it easier to write, test, and maintain complex applications.

Memory Advantage: Vara.eth supports up to 2GB of memory per program (current limit),
significantly exceeding Ethereum's gas-constrained execution where effective memory rarely
exceeds a few MB. This empowers developers to create larger, more sophisticated applications,
such as financial simulations, Al models, and real-time gaming systems, without being hindered by
traditional blockchain limitations.

Reverse Gas Model and Flexible Gas Management

Besides the fact that Vara.eth minimizes the costs associated with decentralized computation by offloading
resource-intensive tasks to its network, it also introduces a Reverse Gas model, shifting the cost of execution
from users to the program itself. This approach ensures a seamless and accessible user experience, enabling
broader adoption of decentralized applications (dApps).

(4.1) SEND MESSAGE (SETH)
(3.1) TOP UP EXECUTABLE BALANCE, (SwVARA)

(2.1) CREATE PROGRAM, (SETH) (3.2) TRANSFER EXECUTABLE BALANCE TO ROUTER

r

(2.2) CREATE MIRROR

(1) UPLOAD CODE ($ETH) (4.4) UPDATE EXECUTABLE BALANCE
T E—————S,

(4.3) COMMITMENT(WVARA SPENT)

ROUTER ~ MIRROR
CONTRACT CONTRACT
A N
! (4.2) EXEGUTION

EXECUTOR L
NODE N

EXECUTOR
NODE

Gas Fees and Reverse Gas Model

In Vara.eth, programs maintain two types of balances:

e Executable Balance: Dedicated solely to program execution. If this balance is depleted, the
program cannot process hew messages until replenished.
e Free Balance: Acts as a general-purpose wallet for funds earned by the program, which can be

withdrawn or converted into Executable Balance if supported by the program logic.

This model allows anyone to send messages without incurring extra compute costs beyond the base
Ethereum transaction fee. The Executable Balance is consumed during execution, while funds are distributed
to the network's Executors as rewards. Developers can design applications that fund their Executable

Balance through revenue models like user payments, fees, or even sponsorships.

The reverse gas model enhances accessibility and usability, eliminating user-side complexity while promoting
scalability and efficiency for dApp creators. This makes Vara.eth particularly suited for applications that
prioritize user adoption and real-time responsiveness, such as financial services, gaming platforms, and
enterprise solutions.

Real-Time Computation Result and Pre-confirmations

For latency-sensitive applications, Vara.eth introduces its own technical implementation of a

. This feature allows developers to access computation results immediately after
execution, even before the transaction is finalized on-chain. By bridging the gap between decentralized
security and Web2-like responsiveness, this capability enables the development of cutting-edge applications

https://ethresear.ch/t/based-preconfirmations/17353

in finance, competitive gaming, and other industries. Pre-confirmations provide early results for UX, while
canonical finality still follows Ethereum's finality rules.

No Own Blocks

Unlike traditional Layer 2 solutions such as Arbitrum and Optimism, which generate and store their own
blocks, Vara.eth does not create blocks. Instead, it processes transactions and program state changes
directly within its network, leveraging its decentralized compute architecture. Rather than producing blocks,
Vara.eth checkpoints batched program state changes to Ethereum, ensuring security while avoiding L2-style
block overhead. By avoiding block creation, Vara.eth eliminates the overhead associated with block
production and consensus mechanisms, reduces latency, and enables real-time computation. This design
enhances scalability and allows for more efficient resource utilization, making it ideal for applications
requiring instant feedback and high computational throughput.

Core Components

ara.eth redefines decentralized computation by operating as a P2P compute network rather than a
v standalone blockchain. It eliminates the need to produce its own blocks or maintain a shared state,

focusing solely on efficient and reliable off-chain computation. Vara.eth relies on several key
components that enable its interaction with the Ethereum ecosystem and execution of WASM-based
programs. These components work together to provide a seamless, scalable, and efficient computational
layer.

Gear Programs

Vara.eth programs are developed as WASM modules using the Gear Protocol framework, similar to Vara
programs. These programs enable developers to implement arbitrary logic tailored to their applications.

Programs are uploaded to Ethereum as "blobs" — a form of data stored outside Ethereum's main state but
accessible through archive nodes. This mechanism ensures that large datasets can be efficiently stored
without burdening the Ethereum network's main state. Each Gear program can allocate up to 2GB memory,
allowing for the execution of highly complex computations, a capacity that far exceeds the stricter memory
constraints of Ethereum, Optimistic Rollups, Based Rollups, and ZK Rollups. Once uploaded and verified, the
program becomes available for execution within the Vara.eth network.

https://gear-tech.io/
https://vara.network/

This one-time upload and registration mechanism ensures the security and integrity of all Gear programs
while simplifying the workflow for developers, enabling seamless program reuse across multiple dApp
interactions.

Router Contract

The Router Contract, written in Solidity, serves as the primary interface between Ethereum and Vara.eth. This
contract plays a pivotal role in bridging off-chain computations with Ethereum's on-chain infrastructure.

Key functions of the Router Contract include:

e Program Management: Developers can upload and manage WASM programs for execution within
Vara.eth.

e Result Handling: The Router Contract finalizes validator-signed execution batches and applies
state updates for associated Mirror Contracts.

e Validator Coordination: The contract maintains validator keys and activates validator sets sourced

from Symbiotic.

The Router Contract is a central component, deployed once for the entire Vara.eth ecosystem, ensuring a
single coordination point within Ethereum.

Mirror Contract

For every uploaded Gear program, a corresponding Mirror Contract is automatically deployed on Ethereum.
This contract acts as the primary interface between the on-chain and off-chain environments, enabling
smooth interaction between Vara.eth and Ethereum-based components. The deployment of Mirror Contracts
for each Gear program ensures modularity and scalability.

Mirror Contracts handle three primary tasks:

¢ |Initiating Requests: They emit events that trigger the execution of WASM programs within the
Vara.eth network.

e Receiving Results: Mirror Contracts receive execution results from the Router Contract and relay
them to other Ethereum-based smart contracts or dApps.

e Typed Interfaces: Mirror Contracts now expose typed ABI interfaces (via Sails), allowing program
inputs and outputs to be interpreted natively. This design fully replaces the older Decoder Contract

model, making Mirrors the default and universal interface layer.

Validators

Validators are the backbone of the Vara.eth network — specialized nodes (also called validator nodes or
executor nodes) that execute Wasm programs. These validators ensure the seamless operation of Vara.eth by

maintaining redundancy, decentralization, and real-time computational capabilities. Unlike traditional
blockchain validators that primarily verify transactions, Vara.eth validators actively execute computations and
produce signed results. They operate without a shared storage root, focusing entirely on program execution
and result validation.

The responsibilities of validators include:

e Event Detection: Validators monitor events emitted by Router and Mirror Contracts on Ethereum.
These events signal the need to retrieve and execute specific Wasm programs stored in the
Vara.eth network.

e Program Execution: Upon detecting a valid event, validators fetch the corresponding program,
execute its logic, and produce results. These computations leverage Gear Protocol's Wasm runtime,
ensuring high performance and flexibility.

e Result Signing: Validators sign computation results, which are then aggregated and finalized
through the Router.

¢ Peer Coordination: Validators communicate through a peer-to-peer (P2P) network, ensuring fault

tolerance and redundancy across the Vara.eth ecosystem.

Validators are selected through Symbiotic Protocol's restaking mechanism, which aligns economic incentives
with performance and reliability. Misbehavior, such as producing inaccurate results, is deterred by a robust
slashing mechanism that reduces the offending validator's stake. This economic accountability ensures that
the network remains secure and trustworthy. Validators can also provide pre-confirmations — off-chain
attestations that give users immediate feedback before final settlement on Ethereum.

Middleware

Middleware connects Vara.eth to the Symbiotic restaking protocol, ensuring that technical execution is
backed by economic security. It manages operators (entities that run and maintain validator nodes), validator
set elections, reward routing, and slashing enforcement. By aligning operators and stakers with transparent
incentives, Middleware guarantees both accountability and resilience of the network.

In practice, Middleware coordinates the flow of value and responsibility:

e Operator Lifecycle: registering operators (entities running validator nodes), tracking their
performance, and enabling or disabling them within the network.

e Validator Elections: selecting and rotating validator sets based on restaked collateral, ensuring
fairness and continuity of security.

e Rewards Distribution: routing rewards both to node operators for their work and to stakers who
provide collateral.

¢ Slashing and Discipline: enforcing penalties for misbehavior or downtime, preserving the integrity

of execution.

By combining these roles, Middleware acts as the economic backbone of Vara.eth — making sure that every
off-chain computation is not only technically correct but also economically secured and accountable.

Integration of Ethereum dApps with Vara.eth

Methods

Vara.eth offers two distinct methods for integrating Ethereum dApps, allowing developers to choose the
approach that best suits their application's requirements.

The first method, Event-Based Integration, relies on Ethereum smart contracts emitting events to request
off-chain computations. These events are detected by validators within the Vara.eth network, triggering the
execution of the specified Wasm program. Once the computation is complete, the results are sent back to
Ethereum through the Mirror Contract. This approach ensures a decentralized interaction between Ethereum
and Vara.eth, maintaining the security and integrity of the process.

The second method, Native Integration, allows dApps to directly interact with their Gear programs via
Remote Procedure Call (RPC). Unlike the event-based approach, native integration bypasses the need for
Ethereum events, enabling real-time interactions with the Vara.eth network. This method is particularly
advantageous for applications that require immediate results, as it leverages Vara.eth's pre-confirmation
mechanism to provide outputs instantly.

Both integration methods are designed to be developer-friendly and scalable, ensuring that dApps can
seamlessly incorporate Vara.eth's computational power without compromising security or performance.

+ RECEIVE RESULTS IN SAME BLOCK « UPDATE STATE
| PROCESS UPDATE | - PROCESS RESULTS « EMIT EVENTS
E.G. “SETTLE POSITIONS” * RELAY RESULTS TO DAPP

DAPP 4°—> SMART CONTRACT (DAPP) GEAR.EXE SMART CONTRACTS

PRE-CONFIRMATION

VARA.ETH

| REQUEST GEAR PROGRAM
EXECUTION

WASM RUNTIME SEQUENCER

GEAR PROGRAM (DAPP) ‘fgbgggfagfmo” RESULTS

+ CUSTOM LOGIC + SEND BATCH TXN TO ETHEREUM

VALIDATORS
B s+meEiaTiC

This diagram illustrates native integration of an Ethereum-based dApp with Vara.eth

Brief Workflow for dApp Developers

1. Define the Computationally Intensive Part. Identify the resource-heavy segment of your dApp's
business logic and rewrite it in Rust using Gear Protocol's Sails library. Compile the program into a
Wasm module and generate an IDL (Interface Definition Language) file to describe its interface.

2. Upload Your Wasm to Ethereum. Publish your Wasm code as part of a special blob-carrying
transaction (EIP-4844). The blob is stored outside Ethereum's main state, but remains accessible via
archive nodes. The blob serves as the canonical source of your program's code for Vara.eth
initialization.

3. Initialize Your Program in Vara.eth. With a single action, activate your Wasm program on Vara.eth.
This initialization process uploads the code to Vara.eth, establishes the program's initial state, and
automatically deploys a corresponding Mirror Contract on Ethereum. The Mirror Contract serves as
the ABIl-compatible interface, representing your dApp within the Ethereum ecosystem and
facilitating seamless interaction between the two environments.

4. Leverage Lightning-Fast Computation. Interact with your program by submitting messages
through Ethereum, paying only the transaction fee for message submission. Alternatively, use the
RPC interface to access your dApp's functionality directly without incurring additional costs.

5. Finalization and Real-Time Availability. Once your transaction is included in an Ethereum block,
the computation is finalized and made available according to Ethereum's native finality mechanism.
However, Vara.eth's pre-confirmation mechanism allows your dApp to utilize the results of

computations instantly, even before the transaction is finalized on-chain. This feature ensures a

near-instantaneous response time, bridging the gap between blockchain finality and real-time

interaction.

Uploading programs and interacting with them is quite simple thanks to the developer-friendly tools provided
by Vara.eth. Through the Gear IDEA, anyone can easily integrate their Ethereum application with efficient
computations on Vara.eth, upload a program, read its state, send a message, and much more.

Security and Validator Selection

egardless of the integration approach, validators are critical to Vara.eth's operation. Their selection and
R management are governed by a decentralized re-staking mechanism facilitated by the Symbiotic

Protocol. This process ensures that Vara.eth maintains a secure and scalable compute network by
dynamically managing the set of validators (operated by network participants called operators) responsible
for program execution.

Symbiotic Protocol provides the infrastructure for this election process, serving as an exchange hub for three
primary stakeholders: stakers, operators, and the Vara.eth network itself. Together, these actors create a
robust and decentralized validator selection mechanism tailored specifically to Vara.eth's requirements.

Validator Selection Workflow

Vara.eth configures the operator set, establishing parameters such as staking limits and the maximum
allowable stake for individual operators. Operators (entities that run validator nodes) are elected based on
their ability to attract stakers who delegate collateral (e.g., ERC-20 representations of VARA or other
supported assets) to them. This delegated stake determines their eligibility to serve as active Executors.
Once elected, operators participate in program execution through their validators and sign results collectively,
which are then finalized by the Router Contract. The list of active validators is continuously updated and
pushed to the Router Contract, which governs Vara.eth's decentralized compute infrastructure.

Key elements of the selection process include:

1. Stake Allocation: Vara.eth establishes operator sets, defines staking requirements, and locks stake
amounts for predefined epochs to maintain network stability.
2. Symbiotic Vault Integration: Vaults manage the staking process, allocate collateral to operators,

and enforce strategies specific to Vara.eth's execution needs.

https://idea.gear-tech.io/
https://symbiotic.fi/
https://symbiotic.fi/

Key Actors in Vara.eth Validator Selection

e Vara.eth Network: Defines the decentralized infrastructure required to execute programs,
configures operator sets, and establishes staking parameters. Vara.eth also ensures that stakers
and operators are appropriately rewarded for their contributions.

e Stakers: Provide economic security by delegating collateral to operators. In return, they receive a
share of the rewards distributed by Vara.eth.

e Operators: Operate validator nodes to execute programs on Vara.eth. Operators are the entities
responsible for running and maintaining the technical infrastructure (validators). They benefit from
Symbiotic Protocol's ability to pool stakes across multiple stakers, enabling efficient security for
Vara.eth without requiring isolated infrastructure for each staker.

e Vaults: Act as intermediaries in the staking process, handling deposits, withdrawals, and slashing
events. Vaults also distribute staking rewards based on performance and provide historical data for

external reward contracts.

Rewards and Incentives

Vara.eth ensures that stakers and operators are properly incentivized for their roles within the network.
Rewards are calculated off-chain by Vara.eth, which generates a Merkle tree structure to facilitate secure and
transparent claims by participants. The rewards are divided into:

e Operator Rewards: For maintaining and running validator nodes.

e Staker Rewards: For providing the collateral that secures Vara.eth's operations.

This flexible reward logic allows Vara.eth to adapt its incentive structure as needed, ensuring long-term
sustainability.

Slashing and Misbehavior

Symbiotic incorporates a robust slashing mechanism to deter malicious behavior. If a validator produces
inaccurate results or its operator engages in misconduct, a special Middleware contract can initiate a slashing
request to Symbiotic. Symbiotic's Slasher module validates these requests and enforces penalties by
reducing the stake of the offending validator and its operator. This ensures economic accountability and
strengthens the overall integrity of the network.

Attracting Validators and Operators

Running a Vara.eth validator node is designed to be mutually beneficial for operators and stakers. With the
added appeal of rewards and the flexibility provided by Symbiotic's Vault and staking mechanisms, many Vara

Network validators and other operators are expected to run Vara.eth validator nodes, further bolstering the
network's security and scalability.

Economic Model

ara.eth's economic model is built to support scalable, efficient, and sustainable decentralized
v applications (dApps). It introduces mechanisms like the reverse gas model and a dual-balance

system, enabling programs to operate seamlessly while maintaining cost transparency and flexibility.

Fundamental Aspects

Reverse Gas Model

Vara.eth uses a reverse gas model, where the cost of executing a program is deducted from the program's
Executable Balance instead of being paid by the user. This means users only pay the Ethereum transaction
fee (in ETH) for sending messages to Mirror Contracts, while the computational costs of Gear program
execution are covered by the program itself. This approach simplifies interactions for users and makes
programs more accessible.

Dual-Balance System
Programs in Vara.eth maintain two types of balances:

e Executable Balance: Dedicated to execution costs. If this balance is zero, the program cannot
process messages.

¢ Free Balance: Serves as a wallet for funds earned or deposited into the program. These funds can
be withdrawn by the program creator or converted into Executable Balance if the program's logic

permits.
Funding Mechanisms

Programs in Vara.eth maintain their Executable Balance through multiple methods:

e Developer or Sponsor Funding: The program creator or external sponsors can directly top up the
Executable Balance via Ethereum transactions, ensuring the program remains operational without

requiring user contributions.

e Revenue-Based Replenishment: Programs can replenish their Executable Balance using revenue
generated through operational activities, such as fees, commissions, or trading spreads.

e User-Driven Contributions: Programs may be designed to accept small payments (value) from
users as part of their interactions. A portion of these payments can be converted into Executable

Balance, creating a self-sustaining model for the program.

Validator Rewards

When a program executes, the consumed portion of its Executable Balance is deducted and recorded in the
Router Contract. These funds are later distributed to validators and proportionally shared with stakers who
delegated collateral, incentivizing reliable computation and maintaining network security.

Transparency and Tracking

Developers and users can query the current Executable Balance of a program via RPC calls using the
program's state hash. Mirror Contracts publish the program's state commitment, which can be queried to
verify balances and execution costs.

Economic Patterns

Developers can design their programs to follow various economic patterns based on their application's goals

and revenue model:

e Patron Model: The program creator funds the Executable Balance, allowing users to interact with
the program for free.

e Revenue-Supported Model: The program generates income (e.g., through fees or commissions)
and uses part of this revenue to replenish its Executable Balance.

e User-Paid Execution: Users include a small value with their messages, which is converted into

Executable Balance, enabling the program to fund itself through user interactions.

Advantages of the Model

e Clear Cost Allocation: Users pay only for sending Ethereum transactions, while programs handle
computational costs. This distinction simplifies budgeting and encourages dApp adoption.

e Adaptability: Developers can implement various funding strategies, tailoring the economic
structure to the specific needs of their application.

e Resource Optimization: The reverse gas model ensures efficient use of program funds, with
balances directly linked to execution and general-purpose needs.

e Network Incentives: Executors are rewarded for computation, promoting a robust and secure

decentralized execution environment.

Use Cases and Target Audience

he versatility of Vara.eth makes it ideal for a wide range of applications across various industries. Its
I computational power, scalability, and user-friendly design open up new possibilities for developers and
enterprises alike.

In the financial sector, Vara.eth will transform DeFi platforms by enabling faster and more cost-effective
execution of complex financial operations. Decentralized exchanges, for example, can benefit from near-
instant trade finalization and reduced fees, enhancing their appeal to traders and liquidity providers.

The gaming industry is another area where Vara.eth shines. Gaming platforms can deliver real-time
interactions and seamless gameplay. This capability is particularly valuable for multiplayer environments and
strategy games that require low-latency processing. Most current Web3 games focus primarily on the
marketplace side of gaming, such as NFTs and trading, whereas Vara.eth is designed to enable seamless in-
game play, real-time transactions, and mass usage. By addressing the computational demands of modern
gaming, Vara.eth paves the way for immersive and scalable Web3 gaming experiences.

Vara.eth also plays a pivotal role in artificial intelligence and machine learning applications. Developers can
use its parallel execution capabilities to train and deploy Al models efficiently, leveraging the network's
computational power without incurring excessive costs.

In supply chain management, Vara.eth can process large datasets generated by |oT devices off-chain, such as
temperature readings or GPS coordinates, and sends only the most relevant insights on-chain. This approach
will reduce costs while maintaining the transparency and security of blockchain technology.

Automated Risk Management for DeFi Protocols

Effective risk management is a critical component for decentralized finance (DeFi) protocols. These systems
often rely on third-party risk assessment providers to deliver updated risk scores, which must be reflected
on-chain to inform portfolio adjustments and other decisions. Traditionally, automating this process requires
centralized off-chain components or oracle systems, introducing inefficiencies and potential points of failure.

Vara.eth offers a decentralized solution by enabling direct integration with third-party risk services. Using its
high-performance computational environment, risk providers can seamlessly process and transmit updated
scores or optimized portfolio recommendations directly to Ethereum. This integration eliminates the need for
intermediaries and enhances the speed and reliability of risk management workflows.

For instance, a hedge fund operating on a DeFi platform could leverage Vara.eth to receive real-time risk
updates. The platform automatically processes these updates and executes on-chain adjustments, such as
portfolio rebalancing, without requiring additional manual intervention. This approach not only streamlines
operations but also enhances the responsiveness and security of the entire risk management process.

Al & ML

Vara.eth also unlocks new opportunities in artificial intelligence and machine learning. Thanks to parallel
execution and the ability to scale horizontally both at the program level and across the network architecture,
workloads such as training, inference, and real-time Al services can run efficiently in a decentralized
environment. This makes use cases like decentralized Al models and marketplaces for machine intelligence
not only possible, but practical.

High-Frequency Trading (HFT)

High-frequency trading (HFT) requires ultra-low latency, rapid decision-making, and high throughput —
characteristics traditionally considered unattainable in decentralized environments. Existing DeFi protocols,
constrained by Ethereum's block times and finality delays, struggle to deliver the responsiveness required for
advanced market-making or arbitrage strategies.

Vara.eth changes this paradigm. Pre-confirmation enables trading engines to execute and confirm operations
within milliseconds, while still preserving Ethereum-level security once transactions are finalized. This design
makes it possible to build decentralized exchanges and central limit order books (CLOBs) on top of Ethereum
that rival the speed and efficiency of centralized platforms. The same infrastructure enables perpetual futures
markets with real-time funding rate calculations, instant liquidations, and high-frequency position
management—capabilities traditionally only available on centralized derivatives exchanges.

Inspired by pioneering systems like HyperLiquid, Vara.eth extends the concept to Ethereum:

e Sub-second order matching and real-time liquidity updates are possible through pre-confirmed off-
chain execution.

e Deterministic and auditable settlement ensures that once Ethereum finality is reached, results are
fully secure and tamper-proof.

e Horizontal scalability of the Vara.eth architecture allows trading workloads to be distributed across

clusters, removing throughput bottlenecks.

When combined with decentralized Al agents, Vara.eth unlocks even more powerful capabilities. Autonomous
trading agents can be trained and deployed directly on Vara.eth, continuously adapting strategies, optimizing
liquidity provision, and executing trades at high speed. This synergy of Al-powered decision-making with
Vara.eth's low-latency execution layer lays the foundation for the next generation of on-chain financial
infrastructure — fast, intelligent, and fully compatible with Ethereum.

Off-Chain Financial Simulations

Large-scale financial simulations, such as Monte Carlo simulations or portfolio optimizations, are essential
tools for analyzing risk and making informed decisions in decentralized finance (DeFi). Monte Carlo
simulations involve running thousands or even millions of randomized scenarios to model potential outcomes
and assess the probability of different events occurring. For example, they are widely used to forecast

portfolio performance under varying market conditions, helping to quantify risk and identify optimal strategies
for investment.

However, executing these computations directly on Ethereum is both costly and time-consuming due to high
gas fees and the network's limited computational capacity. While Layer-2 solutions like Optimistic Rollups
and ZK Rollups aim to reduce costs and increase scalability, they still inherit constraints from Ethereum.
Optimistic Rollups rely on fraud proofs and extended challenge periods, which delay finality for DeFi
applications requiring real-time responses. ZK Rollups, on the other hand, involve computationally expensive
proof generation processes, making them less efficient for running large-scale simulations or real-time
optimizations.

By contrast, Vara.eth offloads these intensive computations entirely off-chain, allowing DeFi platforms to
process simulations or optimizations efficiently while maintaining seamless integration with Ethereum for
critical on-chain actions. Once the computations are complete, results such as updated risk scores or
optimized portfolio configurations are seamlessly transmitted back to Ethereum. These results can then
inform on-chain actions, such as portfolio adjustments, in real time.

For instance, a hedge fund operating on a DeFi platform could use Vara.eth to continuously run advanced risk
assessment algorithms. The outputs from these simulations are used to automatically rebalance portfolios
on-chain, ensuring optimal performance and minimizing risk exposure. This approach improves the speed and
cost of financial decision-making in DeFi environments.

Supply Chain & loT Data Processing

In supply chain management, real-time data from Internet of Things (loT) devices plays a crucial role in
maintaining efficiency and ensuring quality control. For example, sensors may continuously monitor
conditions such as temperature, location, or humidity for shipments. However, processing and storing this
vast amount of data directly on-chain is neither cost-effective nor feasible due to the constraints of
blockchain scalability and high transaction costs.

Metrics such as temperature thresholds, location tracking, or anomaly detection can be computed within the
Vara.eth network, significantly reducing the computational load on the blockchain. Only critical results or
actionable alerts are then transmitted on-chain, ensuring cost efficiency and data relevance.

A logistics company managing temperature-controlled shipments can integrate Vara.eth into its supply chain
monitoring system. loT sensor data is processed off-chain, and if a shipment exceeds a predefined
temperature threshold, Vara.eth triggers an on-chain event. This event may alert stakeholders or initiate
predefined actions, such as rerouting the shipment or adjusting storage conditions.

Trustless Web?2 Integration

Vara.eth enables a unique capability for decentralized applications: trustless integration with Web2 services
through verified HTTPS and TLS proofs. This allows smart contracts to securely consume data from external
APIs and web services without relying on centralized oracle providers, opening entirely new categories of
applications.

Using cryptographically verified TLS handshakes and certificate chains, Vara.eth programs can fetch data
from external HTTPS endpoints and prove the authenticity of responses on-chain. This mechanism ensures
that data retrieved from Web?2 sources—such as financial market data, weather information, sports scores, or
social media metrics—can be consumed by Ethereum smart contracts with full transparency and verifiability.

For example, an arbitrage detection system could monitor price feeds from multiple centralized exchanges in
real-time. Vara.eth would aggregate thousands of price quotes, identify discrepancies across markets, and
generate verified trading signals that can be acted upon on-chain. Unlike traditional oracle solutions that
require trust in third-party data providers, this approach allows anyone to verify the authenticity of the data
by checking the cryptographic proofs of the original HTTPS responses.

This capability is particularly powerful for applications requiring real-time external data with minimal latency,
such as decentralized prediction markets, dynamic NFT metadata, weather-based insurance contracts, or
sports betting platforms. By eliminating the intermediary layer typically required for off-chain data integration,
Vara.eth reduces costs, improves speed, and enhances security for a wide range of data-dependent
applications.

Off-Chain Voting System

Large-scale decentralized autonomous organizations (DAOs) face significant challenges when implementing
on-chain voting systems. The high gas costs associated with processing votes, especially for mechanisms like
weighted or quadratic voting, can make the process prohibitively expensive. Additionally, the public nature of
on-chain voting compromises member privacy, and as the number of participants grows, scalability becomes
a major obstacle.

Vara.eth can offer an efficient alternative by enabling DAOs to process votes off-chain while retaining the
integrity and trust required for decentralized governance. Voting logic can be executed within Vara.eth's
network. Only the final tally and essential results are submitted on-chain, significantly reducing costs and
computational overhead.

For example, a DAO with 10,000 members can integrate Vara.eth into its governance framework. Members
sign their votes off-chain, ensuring privacy and minimizing gas fees. The Gear program tallies the votes
securely and submits the aggregated result to the blockchain.

Future Improvements

ne of the most anticipated advancements of Vara.eth's development is the integration of multi-
0 network support. While currently optimized for Ethereum, Vara.eth's architecture is inherently chain-
agnostic. The same execution model can be ported to other Layer-1 protocols such as Solana, Near,
BNB Chain, and others. This multi-chain compatibility will allow developers to leverage Vara.eth's features

across a broader range of blockchain environments, fostering greater interoperability and innovation.

Vara.eth is also designed with powerful horizontal scalability options that can adapt to growing demand. The
platform supports multiple scaling paradigms that can be deployed independently or combined: a single
Router with unified validator set for simplicity, multiple independent Routers (clusters) where each has its own
validator set serving distinct program pools, or subgrouped validators within a single Router to reduce
synchronization overhead. These architectures can be combined to form a modular execution fabric where
computation scales both within programs (via threads) and across program clusters, enabling the network to
grow with demand while preserving Ethereum-level security and canonical finality.

Additionally, Vara.eth may incorporate zk-SNARKs to enhance privacy and security. The platform is designed
to support a ZK-Verified Mode that uses zero-knowledge proofs to maintain full Ethereum-equivalent
security, ensuring every computation is cryptographically verified on mainnet. These zero-knowledge proof
technologies enable computations to be verified without revealing underlying data, making them ideal for
applications requiring confidentiality. As zk-SNARKs become more practical and scalable, their deeper
integration into Vara.eth will further solidify its position as a leader in decentralized computation.

Continuous optimization is another key focus. Regular updates to the platform will enhance computational
efficiency, reduce latency, and improve the developer experience, ensuring that Vara.eth remains at the
forefront of blockchain innovation.

Summary

ara.eth represents a paradigm shift in decentralized computation. By addressing Ethereum's scalability
v and cost limitations, it empowers developers to build dApps that deliver unmatched performance and
user experience. Its parallel execution capabilities, near-zero gas fees, and seamless integration make
it a transformative solution for industries ranging from finance and gaming to supply chain management and

artificial intelligence.

As Vara.eth continues to evolve, its focus on multi-network compatibility and cutting-edge technologies will
enable it to redefine the possibilities of blockchain development. Developers and users alike are invited to join

the Gear community to explore the full potential of this revolutionary platform.

Vara.eth is under active development and is being continually improved each day, with regular commits to the
public repository.

Join the Vara.eth Community

Would you like to become part of the Gear community and learn more about Vara.eth?

e Join Gear x Vara Discord
e Follow us on Telegram

e Email us at hello@gear-tech.io

Glossary

Actor Model

A computational model where individual components, called actors, operate independently and communicate
with each other through messages. This approach enables parallel processing and high scalability, which are
integral to Vara.eth's architecture.

Archive Node

An Ethereum node that stores the complete history of the blockchain, including all past states and
transactions. Unlike full nodes, which only maintain the current state and recent transaction data, archive
nodes retain historical data that allows developers and applications to access detailed information about any
block or state from the chain's entire history. Archive nodes are essential for tasks like querying historical
balances, accessing older smart contract states, or retrieving blobs uploaded for off-chain processing, as
utilized by Vara.eth.

Based Rollups

A type of Layer-2 scaling solution that relies directly on Layer-1 protocols for sequencing and data availability.
Unlike traditional rollups that use dedicated infrastructure, based rollups integrate deeply with the underlying
blockchain, leveraging its decentralization and security guarantees. This alignment with Layer-1 simplifies

https://github.com/gear-tech/gear/tree/master/ethexe
https://discord.gg/BhhqF6f8u9
http://t.me/gear_tech
mailto:hello@gear-tech.io

operations by removing the need for native tokens or separate trust assumptions. While based rollups benefit
from Ethereum's censorship resistance and robust consensus, they inherit its limitations, such as slower
transaction finality and shared scalability constraints. Additionally, transaction flexibility is often reduced
because sequencing and execution must conform to Layer-1 rules.

Blob

A large binary object stored on the Ethereum network as part of a transaction. In Vara.eth, Wasm code is
uploaded as a blob, which resides outside Ethereum's main state but is accessible via archive nodes.

dApp (Decentralized Application)

A software application that runs on a blockchain or decentralized network. dApps are powered by smart
contracts and provide users with transparent and trustless interactions without relying on centralized servers.

Validator

A specialized node within the Vara.eth network responsible for executing Wasm programs. Validators (also
referred to as validator nodes or executor nodes) retrieve programs, perform computations, and generate
sighed results. Unlike traditional blockchain validators that primarily verify transactions, Vara.eth validators
actively execute off-chain computations. Validators are operated by entities called operators and are selected
through Symbiotic Protocol's restaking mechanism.

Executable Balance

A dedicated balance maintained by a Gear program to cover execution costs. Each time the program
processes a message, a portion of this balance is consumed and later distributed to Executors and stakers. If
the Executable Balance reaches zero, the program becomes inactive until replenished.

Finality

The point at which a transaction or computational result is considered immutable and irreversible. On
Ethereum, finality typically occurs after ~12.8 minutes, but Vara.eth enhances this by providing pre-
confirmation mechanisms for near-instant feedback.

Gear Protocol

The foundational framework behind Vara.eth that supports the creation and execution of Wasm programs. It
provides the tools and runtime environment necessary for decentralized computation.

IDL (Interface Definition Language)

A file that describes the structure and interface of a Wasm program. Developers use IDL files to define how
their Gear programs interact with external systems or smart contracts.

Mirror Contract

A smart contract deployed on Ethereum to act as an interface for a Gear program. Mirror Contracts enable
communication between the Ethereum blockchain and off-chain computations performed on Vara.eth.

Mirror ABI Interface

The ABI (Application Binary Interface) exposed by Mirror Contracts on Ethereum. This interface allows
Ethereum tools and dApps (e.g., MetaMask, Etherscan) to interact with Gear programs natively, without the
need for additional encoding/decoding, by treating them as standard Ethereum smart contracts. Mirror ABI
Interfaces act as a transparent proxy layer for Gear programs.

Middleware

A specialized contract that links the Router Contract with the Symbiotic Protocol. It manages responsibilities
such as key registration, updates, and validator/operator accountability, including slashing requests.
Middleware ensures secure coordination between execution results and staking economics.

Optimistic Rollups

A type of Layer-2 scaling solution that processes transactions off-chain and periodically posts summarized
data (state roots) back to the Ethereum mainnet. Optimistic Rollups operate under the assumption that
transactions are valid ("optimistically") unless proven otherwise. To ensure security, they include a challenge
period during which anyone can submit fraud proofs to contest invalid transactions. This mechanism provides
scalability but introduces delays in transaction finality due to the need for a dispute resolution window.

Operator

An entity (individual or organization) responsible for running and maintaining within the
Vara.eth network. Operators provide the technical infrastructure and are elected through the Symbiotic
Protocol based on delegated stake. They are economically accountable for their validators' performance —
receiving rewards for reliable execution and facing slashing penalties for misbehavior. Operators represent
the bridge between the economic layer (staking) and the technical layer (computation).

Pre-confirmation Mechanism

A feature in Vara.eth that provides computation results immediately after execution, even before the
associated transaction is finalized in an Ethereum block. This enables faster feedback for latency-sensitive
applications.

Reverse-Gas Model

An approach where developers cover transaction fees for end users, enabling dApps to deliver a seamless
user experience. This model is supported by Vara.eth, allowing dApp developers to adopt monetization
strategies similar to those used in Web2 applications.

(4.1) SEND MESSAGE (SETH)
(3.1) TOP UP EXECUTABLE BALANCE, (SwVARA)

(2.1) CREATE PROGRAM, (SETH) (3.2) TRANSFER EXECUTABLE BALANCE TO ROUTER

r

(2.2) CREATE MIRROR

(1) UPLOAD CODE ($ETH) (4.4) UPDATE EXECUTABLE BALANCE

FE——S,
(4.3) COMMITMENT(WVARA SPENT)

ROUTER ~ MIRROR
CONTRACT %, CONTRACT
Y .
! (4.2) EXECUTION
v B

oy

EXECUTOR
NODE
EXECUTOR
NODE

Router Contract

The central smart contract in Vara.eth's architecture that coordinates interactions between Ethereum and the
Vara.eth network. It handles program uploads, execution results, and state transitions.

Shared Storage

A blockchain or Layer-2 design feature where all participating nodes or entities share access to a unified
state, including data and smart contract storage. This approach ensures consistency and transparency across
the network but can limit scalability due to bottlenecks in data retrieval and update operations. Shared
storage is a hallmark of traditional blockchains like Ethereum and many rollup solutions, where all
transactions and state changes must be reflected across the network. Vara.eth avoids shared storage,
instead decentralizing computations and managing state transitions dynamically through its architecture,
enabling greater efficiency and scalability.

Slashing

A mechanism that penalizes Executors for malicious behavior or poor performance by reducing their staked
collateral. This process ensures the economic accountability of Vara.eth participants and maintains the
network's integrity.

Solidity

A high-level, object-oriented programming language specifically designed for writing smart contracts on
blockchain platforms like Ethereum. It allows developers to define and implement the logic that powers
decentralized applications (dApps).

Svymbiotic Protocol

A decentralized restaking system used by Vara.eth to select and manage Executors. It facilitates staking,
distributes rewards, and enforces penalties, ensuring a secure and scalable compute network.

Validator Node (Executor Node)

Technical term for the computational node software operated by an operator. While "validator" is the primary
term used throughout this document, "validator node" or "executor node" may be used when emphasizing the

technical infrastructure. These nodes execute Wasm programs, monitor Ethereum events, and participate in
result signing. See also Validator.

Vaults

Intermediaries in the Symbiotic Protocol that manage the staking process for Executors. Vaults handle
deposits, withdrawals, and rewards, as well as enforce slashing policies.

Wasm (WebAssembly)

A high-performance, lightweight binary format for executing code. Vara.eth uses Wasm programs to run
decentralized computations efficiently and securely.

ZK Rollups (Zero-Knowledge Rollups)

A Layer-2 scaling solution that uses zero-knowledge proofs to validate transactions off-chain and post
verified summaries on-chain. ZK Rollups employ cryptographic proofs (such as zk-SNARKs or zk-STARKS) to
ensure the correctness of the batch without revealing the underlying transaction data. This approach
enhances scalability, reduces gas costs, and offers faster finality compared to Optimistic Rollups, but at the
cost of higher computational demands for generating proofs.

ZK-Verified Mode

A security mode in Vara.eth that uses zero-knowledge proofs to maintain full Ethereum-equivalent security. In
this mode, every computation is cryptographically verified on mainnet, providing the highest level of security
guarantees for applications requiring trustless verification.

